FUNCTIONAL EQUATIONS IN ORTHOGONALITY SPACES
نویسندگان
چکیده
منابع مشابه
Cubic-quartic functional equations in fuzzy normed spaces
In this paper, we investigate the generalizedHyers--Ulam stability of the functional equation
متن کاملSystem of AQC functional equations in non-Archimedean normed spaces
In 1897, Hensel introduced a normed space which does not have the Archimedean property. During the last three decades theory of non--Archimedean spaces has gained the interest of physicists for their research in particular in problems coming from quantum physics, p--adic strings and superstrings. In this paper, we prove the generalized Hyers--Ulam--Rassias stability for a ...
متن کاملcubic-quartic functional equations in fuzzy normed spaces
in this paper, we investigate the generalizedhyers--ulam stability of the functional equation
متن کاملQuadratic-Quartic Functional Equations in RN-Spaces
The stability problem of functional equations originated from a question of Ulam 1 in 1940, concerning the stability of group homomorphisms. Let G1, · be a group and let G2, ∗, d be a metric group with the metric d ·, · . Given > 0, does there exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d h x · y , h x ∗ h y < δ for all x, y ∈ G1, then there exists a homomorphism H...
متن کاملInner Product Spaces and Orthogonality
1 Dot product of R The inner product or dot product of R is a function 〈 , 〉 defined by 〈u,v〉 = a1b1 + a2b2 + · · ·+ anbn for u = [a1, a2, . . . , an] , v = [b1, b2, . . . , bn] ∈ R. The inner product 〈 , 〉 satisfies the following properties: (1) Linearity: 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉. (2) Symmetric Property: 〈u,v〉 = 〈v,u〉. (3) Positive Definite Property: For any u ∈ V , 〈u,u〉 ≥ 0; and 〈u,u〉 =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Mathematics
سال: 2012
ISSN: 1976-8605
DOI: 10.11568/kjm.2012.20.1.077